SandMark User’s Guide

Christian Collberg

January 28, 2003

January 28, 2003 Christian Collberg

Contents

January 28, 2003 Christian Collberg

Chapter 1

Introducing SandMark

1.1 Introduction

SandMark is designed to be the Swiss-Army-Chainsaw of software protection research. In other words, we
hope to build an infrastructure that makes it easy to implement algorithms for

1. code obfuscation,
2. softeware watermarking, and
3. tamper-proofing.

In fact, we hope to implement every software protection algorithm know to man, so that we can compare
and evaluate them.

You normally interact with sandmark through its graphical interface. Start it by typing make run in the
smark3 directory:

Sandhark 2,0

Fiie Help

Obfuscate r Optimise r Statistics | Log of execution

Dynamic Watermark Static Watermark | Welcome to Sandmark!
— - Algarithm
| Trace B | Embed | | Recognize | ,—v
TRACE
jar file: [| ,W
Classpath: | |
Main: [|
Arguments: | |
Trace file; | | ’W
Start Done Configure

Trying out the Watermarker

To get started try watermarking the TTT (tic-tac-toe) application. It can be found in the smapps2 directory.
Start SandMark, then do the following:

o~ == PRERI MMM IR

1. In the trace pane enter

Jar-file to watermark: TTT. jar

Main class name: TTTApplication

2. Hit [START |

3. Click on a few X’s and O’s. Remember the order in which you do the clicks! It should look something
like this:

[X]

ic—Tac—Toe

Obfuscate | Optimise | Statisties | S g ofexenimian

Dynamic Watermark i Stavic Watermark I' - [welcome 1o Sandmarki
- — - . Algorithm | [Staningtorace...
| Trace ‘ | Embed ‘ ‘ Recognize I == Enter wour chosen secret input sequence int
i A NG G | Preprocessing input Jar file,
Click on the DONE button when all the input
TRACE :' Running 'jawa -classpath sandmark. jar: fho
jar file: [fsmapps2/TTT jar | | Browse |
Classpath: [|
Main: [TTTApplication |
Arguments: [|
Trace file: [fsmapps2/TTT.tra | | Browse

Start Done Configure ._ B

R i

4. Hit [DONE].

5. Go to the embed pane and enter the watermark value 123456, like this:

File Help

“Obfuscate | Optimise | Statistics | (RS S e e Sy " Log of execution

J Dynamic Watermark il Static Watermark. | Twelcome to sandmark!

| bl | i Sl e . Algerithm | @ |Starting to trace...
Trace | Embed | | Recognize | e ,‘— > i |Enter your chasen secret input sequence intol
: Lo 7 A ; = e J | |Preprocessing input Jar file.

Click on the DOMNE button when all the input

EMEED - |Running 'j_a\fa —classpath sandmark. jar: fha

Daone tracing.

jar file: | fsmapps2 TTT. jar | Browse i - |Found & trace points.

: 2 || Trace points written to file: ' fsmapps2 JTTT
Watermarked jar [jsmapps2 /TTT _wm.jar | Browse | |wielcome to embedding. .
Watermark value: |12_3456 | | Rand e Flease enter a watermark.

Canstructing . fsmapps2 JTTT _wim. jar by e

Trace file: |..,fsm_app52,fTTT.t_ra | Browse S Inserting call to Watermark. Create_graph: ()

-~ [Inserting call to Watermark. Create_graphs:

| Done embedding the waterrmark!
| Watermark class source saved to "Watermark

e

January 28, 2003 Christian Collberg

i e Il v

6. Hit [EMBED |.

8. Click on the same X’s and O’s as you did in step 3), in the same order.

9. Hit [DONE |

N[

Tic-Tac-Toe

S

e | optimise | Staustics | : el Log of execution
Dynamic Watermark Static Watermark | Welcome to Sandmark!
‘Algotithm - Staning totrace...
E i Enter your chosen secret input seguence int
| Preprocessing input Jar file
Click on the DOME burtan when all the input
Running ‘jawa -classpath sandmark. jar: fho
Done tracing
| ‘ Browse ‘ Found & trace points.
Trace points written 1o file: ' fsmapps2 [TTT]
Chasspath; | | . |Welcome to embedding
|
|

Fom‘usm

| Trace | ; | Embed | | Recognize | —

RECOGNIZE

Jar file: | fsmapps2/TTT wrm.jar

5 5 Please enter a watermark.
: [TTTApplicat ;
Mall T TTAoolcation Constructing .. /smapps2 TTT wm.jar by e

Inserting call to Watermark, Create_graph:)
Inserting call to Watermark. Create_graph&:()
Done embedding the watermark!

Watermark class source saved to Watermar

Arguments: |

watermarks: = ‘ Next | | Welcome to recagnitian...

oot=462; type="Watermark I

Starting recognition run

Running 'java -tlasspath sancmark. jar: sho
Done recognition run..

Mext watermark.

'246012' ('123456"

Stan Done Configure g

W >

You should see the watermark 123456 extracted from the watermarked TTT application.
You can also try
> smark -f ../smapps2/TTT.script

This will run a script that traces, embeds, and recognizes a watermark in the TTT application. You still
have to enter the X’s and O’s and hit the | DONE | buttons in the trace and recognize panes.

1.2 Installing SandMark

SandMark’s source code is stored in a CVS repository at cvs.cs.arizona.edu. You can get the source
anonymously (in which case you can’t make any changes to it): To get the sources anonymously, do the
following

> setenv CVS_RSH ssh

> cvs -d :pserver:anonymous@cvs.cs.arizona.edu:/cvs/wmark login

> cvs -d :pserver:anonymous@cvs.cs.arizona.edu:/cvs/wmark \
checkout -P smark3 smextern3 smapps3 smbloat3 smbin3 smtest3

or, if you have write access to SandMark (i.e an account on cvs.cs.arizona.edu) you should instead do

> setenv CVS_RSH ssh
> cvs -d :ext:MyLogin@cvs.cs.arizona.edu:/cvs/cvs/wmark \
checkout -P smark3 smextern3 smapps3 smbloat3 smbin3 smtest3

January 28, 2003 Christian Collberg

A == FRERE MMM wHMTIEIT IR

where MyLogin is your account name on cvs.cs.arizona.edu.
You should now have four directories:

smark3: The SandMark sources.
smbin3: Scripts.
smextern3: External Java code i.e. jar and zip files needed to run SandMark.
smapps3: Some simple applications you can use to try out SandMark
smbloat3: Some simple test cases for Bloat. Read these to get a feel for how Bloat should be used.
smtest3: A test suite for SandMark.
Once you have checked out SandMark you can get the latest version by running the cvs update command:

> cd smark3
> cvs update -dP

To add a new file you do cvs add file, to remove it cvs rm file and to commit your changes to the
repository at cvs.cs.arizona.edu you say cvs commit.

Building SandMark

Note that you will need Java 1.4 to run SandMark properly. Get the latest version from http://java.sun.
com/j2se/1.4.
Do the following to build SandMark:

> cp smark3/Makedefs.std smark3/Makedefs

Make the ’obvious’ changes to Makedefs.
In particular, you should set these variables:
JDK =

HOME =

> cp smbin3/smark.std smbin3/smark

Make the ’obvious’ changes to smark.

Again, you should set these variables:

JDK =

HOME =

> cp smapps3/Makedefs.std smapps3/Makedefs

Make the same obvious changes as in smark3/Makedefs
> make -C smark3

Build applications to watermark
> make -C smapps3

Start SandMark
> ./smbin3/smark

SandMark gets compiled into a jar-file sandmark. jar. To execute it you also need some other packages
(bloat, BCEL, etc.), which can be found in the smextern directory. The smark script takes care of setting
Java’s classpath correctly so that these get picked up.

You can verify that SandMark works using the test suite:

January 28, 2003 Christian Collberg

—— RS ALALALAAALT ARAL AA AEASA VYV ASAARARST VY M

vV V ¥ # #

H

>

Set some environment variables.

The current directory should contain
smtest3, smark3, smextern3, etc.
export SMEXTERN=$PWD/smextern3/
export SMJAR=$PWD/smark3/sandmark.jar

JDK_ROOT should contain bin/, lib/, jre/
and other stuff
export JDK_ROOT=/path/to/jdk/

run the test script
./smtest3/bin/runtests

See smtest3/README for details of how to add and remove tests.

You can also build the manual:

make -C smark3/doc/ manuals.ps
make -C smark3/doc/ manuals.ps

Finally, you can generate html from the JavaDoc comments in the source:

make -C smark3 jdoc

This generates a directory jdoc of html files.
A minimal installation of SandMark contains 5 files: sandmark.jar, bloat-1.0.jar, BCEL.jar, grappal 2.jar,
and smark3. bloat-1.0.jar, BCEL.jar, and grappal_2.jar should all be in a directory called smextern3,
sandmark.jar should be in a directory called smark3, and these 2 directories should have the same parent
directory. smark3 can have any path.

1.3 SandMark in Windows

To run SandMark in Windows, a minimal installation is necessary, along with a java runtime environment
version 1.4.0 or greater. Before running SandMark, you must set the environment variable CLASSPATH
(case insensitive in Windows) to include the path of sandmark.jar BCEL.jar and bloat-1.0.jar.

Each path in the classpath is seperated by a semicolon. Once the environment variables are set, to run
SandMark, open a command prompt window (Start Menu — Run, and type in command and press enter)
and type java sandmark.Console.

1.4 Scripting SandMark

SandMark can be scripted. Either start SandMark from the command line with the -f option:

> smark -f file.script

or enter the script file in SandMark’s file pull-down manu.

e You can set a property value using the command
set PROPERTY VALUE

The following property values are recognized:

DWM_CT_AnnotatorClass:
DWM_CT _Encode_NodeType:
DWM_CT _Encode_ParentClass:

January 28, 2003

Christian Collberg

== FRERI MMM MM IT IR

DWM_CT _Encode_ClassName:
DWM_CT _Encode_AvailableEdges:
DWM._CT _Encode_StoreWhat:

DWM _CT_Encode_StoreMethods:
DWM_CT _Encode_StoreLocation :
DWM_CT _Encode_ProtectionMethods:
DWM _CT _Encode_IndividualFixups:

DWM _CT _Encode_Encoding: Should be one of perm or radix. "*" picks a random encoding
method.

DWM_CT _Encode_Components:
DWM_CT_Encode_Package:

DWM _MaxTracePoints:

DWM_CT _Encode_StoreLocation: One of formal or global.
DWM_CT_DumplR:

DWM _ClassPath:

e To run tracing use the command
trace input.jar trace.tra MAINCLASS ARGUMENTS
The classpath is set through the command
set ClassPath ...

Tracepoints are written to the trace.tra file.

Embed watermark in input.jar using the command
embed input.jar output.jar watermark trace.tra

Read the tracepoints from the file trace.tra.

Obfuscate input.jar, creating output.jar:

obfuscate input.jar output.jar

Run recognition.
recognize input.jar watermark_count MAINCLASS ARGUMENTS
The classpath is set through the command

set ClassPath ...

If the first non-blank character on a line is # the rest of the line is ignored.

Commands are case insensitive, arguments are case sensitive.

January 28, 2003 Christian Collberg

Chapter 2

The SandMark Code-base

2.1 Dynamic Class Loading

Dynamic class loading is used in several places in sandmark to allow for extensibility. The major problem
in dynamic class loading in sandmark is finding classes to load. In particular, sandmark can be run from a
directory or a jar file, and it may or may not know the location of that directory or jar file or even which of
the two it is running from.

All of this detail is abstracted by sandmark.util.classloading.ClassFinder. ClassFinder allows a caller to
specify one of a small number of classes (defined in sandmark.util.classloading.IClassFinder), and ClassFinder
will return the names of all classes derived from that class. For example, the following code prints to standard
output all classes derived from sandmark.Algorithm.

java.util.Collection c =
sandmark.util.classloading.ClassFinder.getClassesWithAncestor
(sandmark.util.classloading.IClassFinder.ALGORITHM) ;
java.util.Iterator it = c.iterator();
while(it.hasNext()) {
String className = (String)c.next();
System.out.println(className) ;

0 g O Ok W N

3

The class names returned by ClassFinder are those returned by an implementor of
sandmark.util.classloading.IClassFinder. ClassFinder uses the first implementation in the following list whose
default constructor does not throw an exception:

1. FileClassFinder This class reads class names and from which of the interfaces in
sandmark.util.classloading.IClassFinder they derive from a file call Algorithms.txt. This file is
opened by a call to
ClassLoader.getSystemClassLoader().getResourceAsStream(“Algorithms.txt”). If this call
fails, FileClassFinder’s default constructor throws an exception.

2. JarClassFinder This class searches through all entries in the jar file named by
System.getProperty (“SMARK PATH”), loads all class files contained therein, and determines from
which classes in IClassFinder each of these classes derives. If opening the jar file for reading throws an
exception, JarClassFinder’s default constructor throws an exception.

3. DirClassFinder This class is similar to JarClassFinder, but it searches through the file system hier-
archy rooted at System.getProperty(“SMARK_ROOT?”). Its default constructor throws an exception
if the contents of SMARK_ROOT cannot be read.

11

