
SandMark User’s Guide

Christian Collberg

January 28, 2003

2

January 28, 2003 Christian Collberg

Contents

3

4 CONTENTS

January 28, 2003 Christian Collberg

Chapter 1

Introducing SandMark

1.1 Introduction

SandMark is designed to be the Swiss-Army-Chainsaw of software protection research. In other words, we
hope to build an infrastructure that makes it easy to implement algorithms for

1. code obfuscation,

2. softeware watermarking, and

3. tamper-proofing.

In fact, we hope to implement every software protection algorithm know to man, so that we can compare
and evaluate them.

You normally interact with sandmark through its graphical interface. Start it by typing make run in the
smark3 directory:

Trying out the Watermarker

To get started try watermarking the TTT (tic-tac-toe) application. It can be found in the smapps2 directory.
Start SandMark, then do the following:

5

6 1. Introducing SandMark

1. In the trace pane enter

Jar-file to watermark: TTT.jar

Main class name: TTTApplication

2. Hit START .

3. Click on a few X’s and O’s. Remember the order in which you do the clicks! It should look something
like this:

4. Hit DONE .

5. Go to the embed pane and enter the watermark value 123456, like this:

January 28, 2003 Christian Collberg

1.2. Installing SandMark 7

6. Hit EMBED .

7. Go to the recognize pane and hit the START button.

8. Click on the same X’s and O’s as you did in step 3), in the same order.

9. Hit DONE :

You should see the watermark 123456 extracted from the watermarked TTT application.

You can also try

> smark -f ../smapps2/TTT.script

This will run a script that traces, embeds, and recognizes a watermark in the TTT application. You still

have to enter the X’s and O’s and hit the DONE buttons in the trace and recognize panes.

1.2 Installing SandMark

SandMark’s source code is stored in a CVS repository at cvs.cs.arizona.edu. You can get the source
anonymously (in which case you can’t make any changes to it): To get the sources anonymously, do the
following

> setenv CVS_RSH ssh

> cvs -d :pserver:anonymous@cvs.cs.arizona.edu:/cvs/wmark login

> cvs -d :pserver:anonymous@cvs.cs.arizona.edu:/cvs/wmark \

checkout -P smark3 smextern3 smapps3 smbloat3 smbin3 smtest3

or, if you have write access to SandMark (i.e an account on cvs.cs.arizona.edu) you should instead do

> setenv CVS_RSH ssh

> cvs -d :ext:MyLogin@cvs.cs.arizona.edu:/cvs/cvs/wmark \

checkout -P smark3 smextern3 smapps3 smbloat3 smbin3 smtest3

January 28, 2003 Christian Collberg

8 1. Introducing SandMark

where MyLogin is your account name on cvs.cs.arizona.edu.
You should now have four directories:

smark3: The SandMark sources.

smbin3: Scripts.

smextern3: External Java code i.e. jar and zip files needed to run SandMark.

smapps3: Some simple applications you can use to try out SandMark

smbloat3: Some simple test cases for Bloat. Read these to get a feel for how Bloat should be used.

smtest3: A test suite for SandMark.

Once you have checked out SandMark you can get the latest version by running the cvs update command:

> cd smark3

> cvs update -dP

To add a new file you do cvs add file, to remove it cvs rm file and to commit your changes to the
repository at cvs.cs.arizona.edu you say cvs commit.

Building SandMark

Note that you will need Java 1.4 to run SandMark properly. Get the latest version from http://java.sun.

com/j2se/1.4.
Do the following to build SandMark:

> cp smark3/Makedefs.std smark3/Makedefs

Make the ’obvious’ changes to Makedefs.

In particular, you should set these variables:

JDK =

HOME =

> cp smbin3/smark.std smbin3/smark

Make the ’obvious’ changes to smark.

Again, you should set these variables:

JDK =

HOME =

> cp smapps3/Makedefs.std smapps3/Makedefs

Make the same obvious changes as in smark3/Makedefs

> make -C smark3

Build applications to watermark

> make -C smapps3

Start SandMark

> ./smbin3/smark

SandMark gets compiled into a jar-file sandmark.jar. To execute it you also need some other packages
(bloat, BCEL, etc.), which can be found in the smextern directory. The smark script takes care of setting
Java’s classpath correctly so that these get picked up.

You can verify that SandMark works using the test suite:

January 28, 2003 Christian Collberg

1.3. SandMark in Windows 9

Set some environment variables.

The current directory should contain

smtest3, smark3, smextern3, etc.

> export SMEXTERN=$PWD/smextern3/

> export SMJAR=$PWD/smark3/sandmark.jar

JDK_ROOT should contain bin/, lib/, jre/

and other stuff

> export JDK_ROOT=/path/to/jdk/

run the test script

> ./smtest3/bin/runtests

See smtest3/README for details of how to add and remove tests.
You can also build the manual:

> make -C smark3/doc/ manuals.ps

> make -C smark3/doc/ manuals.ps

Finally, you can generate html from the JavaDoc comments in the source:

> make -C smark3 jdoc

This generates a directory jdoc of html files.
A minimal installation of SandMark contains 5 files: sandmark.jar, bloat-1.0.jar, BCEL.jar, grappa1 2.jar,

and smark3. bloat-1.0.jar, BCEL.jar, and grappa1 2.jar should all be in a directory called smextern3,
sandmark.jar should be in a directory called smark3, and these 2 directories should have the same parent
directory. smark3 can have any path.

1.3 SandMark in Windows

To run SandMark in Windows, a minimal installation is necessary, along with a java runtime environment
version 1.4.0 or greater. Before running SandMark, you must set the environment variable CLASSPATH
(case insensitive in Windows) to include the path of sandmark.jar BCEL.jar and bloat-1.0.jar.

Each path in the classpath is seperated by a semicolon. Once the environment variables are set, to run
SandMark, open a command prompt window (Start Menu → Run, and type in command and press enter)
and type java sandmark.Console.

1.4 Scripting SandMark

SandMark can be scripted. Either start SandMark from the command line with the -f option:

> smark -f file.script

or enter the script file in SandMark’s file pull-down manu.

• You can set a property value using the command

set PROPERTY VALUE

The following property values are recognized:

DWM CT AnnotatorClass:

DWM CT Encode NodeType:

DWM CT Encode ParentClass:

January 28, 2003 Christian Collberg

10 1. Introducing SandMark

DWM CT Encode ClassName:

DWM CT Encode AvailableEdges:

DWM CT Encode StoreWhat:

DWM CT Encode StoreMethods:

DWM CT Encode StoreLocation :

DWM CT Encode ProtectionMethods:

DWM CT Encode IndividualFixups:

DWM CT Encode Encoding: Should be one of perm or radix. "*" picks a random encoding
method.

DWM CT Encode Components:

DWM CT Encode Package:

DWM MaxTracePoints:

DWM CT Encode StoreLocation: One of formal or global.

DWM CT DumpIR:

DWM ClassPath:

• To run tracing use the command

trace input.jar trace.tra MAINCLASS ARGUMENTS

The classpath is set through the command

set ClassPath ...

Tracepoints are written to the trace.tra file.

• Embed watermark in input.jar using the command

embed input.jar output.jar watermark trace.tra

Read the tracepoints from the file trace.tra.

• Obfuscate input.jar, creating output.jar:

obfuscate input.jar output.jar

• Run recognition.

recognize input.jar watermark_count MAINCLASS ARGUMENTS

The classpath is set through the command

set ClassPath ...

• If the first non-blank character on a line is # the rest of the line is ignored.

• Commands are case insensitive, arguments are case sensitive.

January 28, 2003 Christian Collberg

Chapter 2

The SandMark Code-base

2.1 Dynamic Class Loading

Dynamic class loading is used in several places in sandmark to allow for extensibility. The major problem
in dynamic class loading in sandmark is finding classes to load. In particular, sandmark can be run from a
directory or a jar file, and it may or may not know the location of that directory or jar file or even which of
the two it is running from.

All of this detail is abstracted by sandmark.util.classloading.ClassFinder. ClassFinder allows a caller to
specify one of a small number of classes (defined in sandmark.util.classloading.IClassFinder), and ClassFinder
will return the names of all classes derived from that class. For example, the following code prints to standard
output all classes derived from sandmark.Algorithm.

1 java.util.Collection c =

2 sandmark.util.classloading.ClassFinder.getClassesWithAncestor

3 (sandmark.util.classloading.IClassFinder.ALGORITHM);

4 java.util.Iterator it = c.iterator();

5 while(it.hasNext()) {

6 String className = (String)c.next();

7 System.out.println(className);

8 }

The class names returned by ClassFinder are those returned by an implementor of
sandmark.util.classloading.IClassFinder. ClassFinder uses the first implementation in the following list whose
default constructor does not throw an exception:

1. FileClassFinder This class reads class names and from which of the interfaces in
sandmark.util.classloading.IClassFinder they derive from a file call Algorithms.txt. This file is
opened by a call to
ClassLoader.getSystemClassLoader().getResourceAsStream(“Algorithms.txt”). If this call
fails, FileClassFinder’s default constructor throws an exception.

2. JarClassFinder This class searches through all entries in the jar file named by
System.getProperty(“SMARK PATH”), loads all class files contained therein, and determines from
which classes in IClassFinder each of these classes derives. If opening the jar file for reading throws an
exception, JarClassFinder’s default constructor throws an exception.

3. DirClassFinder This class is similar to JarClassFinder, but it searches through the file system hier-
archy rooted at System.getProperty(“SMARK ROOT”). Its default constructor throws an exception
if the contents of SMARK ROOT cannot be read.

11

