Sparse Constraints Design Specifications

Alan LaMielle, Michelle Strout
August 4, 2010

1 Summary

This document describes the design of a library for representing a subset of
presburger arithmetic. It supports a single level of existential quantification,
no universal quantifiers, and adds support for arbitrarily nested uninterpreted
function symbols (UFSs) in constraint expressions.

The Omega library and the Integer Set Library (ISL) are two libraries that
seek to represent similar mathematical entities. Omega has limited support for
UFSs and ISL supports arbitrary nesting of existential quantifiers.

1.1 General Approach

The general approach for representing sets and relations is based on the standard
approach taken by many polyhedral libraries: matrices of coefficients where each
row represents a single constraint and each column represents a dimension of
the polyhedron. Sparse constraints differs in its requirement to support UFSs.
For this feature, we allocate an additional column in the coefficient vectors for
each instance of a UFS. For example, the expressions f(i) and f(j) are different
instances of the UFS f and thus will each have a distinct column in the coefficient
vector.

2 Classes and Interfaces

SparseConstraints:

e SymTable (NEED ptr to ST)

e Set of Conjuncts (NOT ptrs to conjuncts)
Subclasses of SparseConstraints:

o Set (e.g., {[a,b] : 0 < a <10A20 < b < n}). Have Set take a list of
strings in the constructor. It will use the list size to determine the arity
and create an array of STEs that big. The constructor will then look
through the strings creating either ConstVal STEs or putting the strings
into a set to pass to the Symbol table constructor. After the symbol table

constructor is done, the Set constructor will have to loop through the list
of strings again to get pointers to the appropriate TupleVar STEs.

— Contains arity of the tuple variables

e Relation (e.g., {[a] = [b] : 0 <a <10A20 <b < n}). The Relation will
take two lists of strings in the constructor, one for the input tuple and one
for the output tuple.

— Contains arity of the input tuple variables and output tuple variables

SymTable
e Fields:

— int num_symconsts;

— int num__tuplevars;

— int num_ existvars;

— int num__ ufcalls;

— map<string, STE*> mSymToSTE;

— map<pair<TypeEnum,int > STE*> mTypeColToSTE;

o Methods:

— SymTable(list<string> tuplevars, set<string> symconsts): Con-
structor will create STEs with type and column info for tuplevars
and symconsts. Useful for testing only. Might want to remove due
to old functionality.

— SymTable(set<string> symconsts, set<string> tuplevars, set<string >
existentials, int numUFCalls): Constructor will create STEs with
type and column info for tuplevars, existentials, and symconsts and
will allow up to numUFCalls to be inserted into the symbol table.

— SymTable(SymTable&): Copy constructor will fail assertion upon
calling.

— STE * lookup(string sym); // need this to lookup variables in
constraints. If doing a lookup on unknown string will create an exis-
tential variable STE and return ptr to that.

— STE * lookup(string fname, list<ExpVec> params); // Use func-
ExpString() to index into map. Create a new STE for UFCall if one
doesn’t already exist.

— STE * lookup(TypeEnum symtype, int col); // this is for accessing
STE while in ExpVec, for printing, anything else?

— // No inserts on purpose. We will either be creating a new STE for
a existential var or for a funcExp the first time we look them up.

— void incrtNumUFCalls(); // increment the number of uninterpreted
function calls

— private string funcExpString(string fname, list<ExpVec> params);
// Create a string by concatenating the fname with the toString()
results for the param ExpVec representations.

— constructExpVec();
Create an empty ExpVec, useful for testing only.

— constructExpVec(string var, int coeff);
Create an ExpVec where the given var has the given coefficient.

— constructExpVec(int const_ coeff);
Create an ExpVec the given constant coefficient.

— constructExpVec(string fname, list<ExpVec> params, int coeff);
Create an ExpVec where the given function call has the given coeffi-
cient.

STE base class:
e String id;
e TypeEnum symtype;
e int col;
STE Subclasses:
e TupleVar
e ExistVar
e SymConst
e UFCall(string fname, list<ExpVec> paramIDs)
Conjunction:
e Array of tuple variables
e Set of Equality
e Set of Inequality
Equality
e ExpVec
Inequality
e ExpVec
ExpVec

Public constructor. Decided to go with a public constructor to make test-
ing easier and avoid making the SymbolTable a friend. In general, should
still use factory methods in the SymbolTable to construct an ExpVec.

4 integer vectors, constructor should take size for each one

vector<int> symconsts_coeffs;

vector<int> tuplevars_ coeffs;

vector<int> existvars_coeffs;

vector<int> ufcalls _coeffs;

int const_ coeff;

void add(int addVal); // Add addVal to const entry in ExpVec.
operator—+(ExpVec const & other); // add other ExpVec to this ExpVec
string toString(); //returns the ExpVec vector sizes

string vectorStrings(); //returns the vectors inside the ExpVec as strings

Notes: Everything except SymTable and maybe SparseConstraints is going to
need a copy constructor.

3 Procedures

Building sparse constraints from an AST will be done in two passes (i.e. two
visitors):

3.1

BuildSymTableVisitor

BuildSymTableVisitor (list<string>> symbolics) will visit an AST to create the
SymbolTable for a SparseConstraints object.

The SymbolTable constructor will have to create SymConst STE instances
for each symbolic and insert them in the appropriate hash tables.

The BuildSymTableVisitor constructor will have to keep track of the sym-
bolics list and upon visiting the tuple variables create a set of them and
THEN call the SymbolTable constructor.

SymTable * getSymTable();

This visitor will call the SymTable constructor and do lookup calls for all vari-
able identifiers in expressions and count count the function calls (using the
incrNumUFCalls() method).

3.2

BuildSparseConstraints

BuildSparseConstraints (SymTable * ST): This visitor is going to call the
lookup for UFCalls in the ST upon visiting the FuncExp nodes in the AST
and it will create a SparseConstraints instance that it will add constraints to
when visiting equality and inequalities. Each expression node in AST should be
mapped to an ExpVec in this visitor.

3.3

map<Node* ExpVec> mNodeToExpVec;

When visiting expressions will be building ExpVec instances and mapping
nodes in the AST to the ExpVec instances.

visitUnion: Just do a union operation. (Alan and MMS needs to do ST
merges first)

visitNormExp: Just add all ExpVec for included expressions and add in
constant.

visitVarExp:
— mNodeToExpVec[node] = ST.constructExpVec(varname, coeft)
visitFuncExp:

— mNodeToExpVec[node] = ST.constructExpVec(name, list of child
ExpVec, coefl)

outEquality:

ExpVec vec = mNodeToExpVec.find(node.getExpression())
— EqConjSet.insert(SREquality(vec))

outlnequality:

— ExpVec vec = mNodeToExpVec.find(node.getExpression())
— TeqConjSet.insert(SRInequality(vec))

outConjunction:

— create conjunction out of the EqConjSet and the IeqConjSet and
place itself into a set

SparseConstraints::normalize()

Ensure that any variable tuple elements have a unique variable name.

Project out a variable: Alan will figure out this and get it working before
we do the compose operation.

3.4 SparseConstraints output
We would like to output a set or relation object
e to an omega string so as to match input or

e to a dot file as shown for the example {[0,x,x,y] : x < 10 and y =
f(x,g(x,1)) and i > x + y } in Figure 1. (NOTE: the text .dot file is
in the git repository under doc/).

3.5 SymbolTable::mergeWith(SymbolTable & other)

Anytime we do an operation that combines two SparseConstraint (i.e., Set or
Relation) instances in some way (i.e., union, compose, apply, etc.), we need to
combine their symbol tables. The approach will be to add unique symbols from
the other SymbolTable to the this SymbolTable. In the process, we should
generate an object called an STMap that can help us convert constraints using
the other symbol table to constraints using the new symbol table.

3.6 Union
e Combine symbol tables
e Iterate over 2 sets of input conjuncts
e Convert all old expression vectors from old ST to new ST for each new

conjunct in new SparseConstraints object.

3.7 Compose

Can’t do this one until we can project out existential variables.

e Combine symbol tables

Outer product between conjuncts of input SparseConstraints

Convert all old expression vectors from old ST to new ST for each new
conjunct in new SparseConstraints object.

Add equality constraints constraints that set "inner" tuple variables equal
to each other

TupleVar

mID: x

mCol: 0

TupleVar
miD: x1
mCol: 1

TupleVar

X

x1

¥y

i ExistVar
2. mID: i
fix.g(x.1)) mCol: 0

UFCall
mID: g(x,1)

mCol: 0

UFCall
mID: f(x.g(x,1))
SymbolTable mCol: 1

mSymToSte:

mTypeColToSTE:

TupleVar

mID: x

mCol: 0

Set
mST:

TupleVar
mID: x1

mCol: 1

mConSet:

Arity: 4

TupleVar

mID: y

mCol: 2

tuplevars_coeffs:
existvars_cocffs:

symeonst_coeffs:

1
y:0
i
mEqualitySet ufealls_coeffs: gx.: 0
minEqualitySet pg— fxa(x,1): 0

ExpVec for x = x1

Conjunct

mTuple

X0
ExpVec for y = f(x.g(x.1)) x1:0
tuplevars_coeffs: yi1

existvars_coeffs:

ufcalls_coeffs:

const_coeff: 0 2(x,1): 0
f(x.g(x,1)): -1

ExpVec for 9 >= x

tuplevars_cocffs:

existvars_coeffs:

symeonst_cocffs:

ufcalls_coeffs:

const_coeff: 9

x:-1
ExpVec for i >= x+y+1 x1:0
tuplevars_coeffs: yi-l

existvars_coeffs:

symconst_coeffs:

ufcalls_coeffs:

const_coeff: -1 20|

fx.g(x,1): 0

Figure 1: SparseConstraints object 7for {0,z,z,y] | (z < 10) A (y
f(@,g(z, D) A >z +y)}

