
Moldyn (M2) FST Example

Michelle Mills Strout

June 12, 2009

We present the steps for automatically generating a composed inspector and
the corresponding executor for a simplified version of the moldyn benchmark.
Portions of this example can be used throughout the RTRT journal paper.

Figure 1 shows a computation with indirect memory references written in the
C programming language. There is an outer time-stepping loop using iterator
s and indirect memory references to the data arrays fx and x using the index
arrays inter1 and inter2.

To improve the performance of this computation, we plan to reorder/permute
the fx and x data arrays to improve spatial data locality, reorder/permute the
iterations of the ii loop to improve temporal locality, and then sparse tile across
the i and ii loops to improve temporal locality between the i and ii loops.

We present the following details for transforming and generating the inspec-
tor and executor for the example in Figure 1:

• How the user specifies the computation in the Sparse Polyhedral Frame-
work (SPF).

• How the transformation writer specifies possible run-time reordering trans-
formations and provides run-time library support for each RTRT.

• How the user specifies a sequence of RTRTs to apply to the example
computation.

• How we automatically generate a composed inspector and executor to
implement the sequence of RTRTs.

1 Specifying the Computation in SPF

There is a python interface for specifying the computations and a preliminary
tool that parses annotated C code into the python code specification. For this
example, we describe the pieces of the computation that need to be specified and
provide examples of how the specifications are done using the python interface.

The computation is organized in an intermediate representation called the
Mapping Intermediate Representation (MapIR). The term mapping derives from

1

for (s=0; s<T; s++) {
for (i =0; i<N; i++) {

S1 : x [i] = fx [i] ∗ 1 . 2 5 ;
}

for (i i =0; i i <n i n t e r ; i i ++) {
S2 : fx [i n t e r 1 [i i]] += x [i n t e r 1 [i i]] − x [i n t e r 2 [i i]] ;
S3 : fx [i n t e r 2 [i i]] += x [i n t e r 1 [i i]] − x [i n t e r 2 [i i]] ;

}
}

Figure 1:

the main component of the specification being integer tuple mappings, or rela-
tions, between computation and computation, between computation and data,
etc. First an instance of the MapIR is constructed.

moldyn_spec=MapIR()

The next step is to specify all of the symbolic constants in the computation.
Symbolic constants are variables whose value does not change during the course
of the computation. For Figure 1, the symbolic constants are T, N, and n inter.

moldyn_spec.add_symbolic(name=’T’)
moldyn_spec.add_symbolic(name=’N’)
moldyn_spec.add_symbolic(name=’n_inter’)

After specifying the symbolic constants, we specify the data and index ar-
rays. The data and index arrays are specified in terms of their name and a set
specification for their data space. The data space bounds can be affine functions
of the previously declared symbolic constants. For an index array, their data
space is equivalent to their input bounds. The output bounds for an index array
specify the space of index values that the index array could contain at runtime.
Below we only show one data array example and one index array example.

moldyn_spec.add_data_array(
name=’x’,
bounds=’{[k]: 0<=k && k<N}’)

moldyn_spec.add_index_array(
name=’inter1’,
input_bounds=’{[k]: 0<=k && k<n_inter}’,
output_bounds=’{[k]: 0<=k && k<N}’)

The next step is to specify each of the statements and information about how
each statement accesses the data arrays. The statements are given names to
enable later association with access relations. [ALAN: since we have the name
for the access relation, this is not really necessary. However, it might be handy
for debugging purposes, so let’s keep it for now.] The statement is specified
as a string with special substrings %(a#) that indicate the data array memory

2

accesses in the statement. The original iteration space for the statement must be
specified (iter space), along with a scheduling function (scatter) that maps
each point in that statements original iteration space to a full iteration space
shared by all of the statements. The assumed schedule is that the instances of
each of the statements will be executed in lexicographical order in the shared,
full iteration space. The iter to data parameter mathematically describes the
access relation between the original iteration space for the statement to the
target data array (data array).

moldyn_spec.add_statement(
name=’S1’,
text=’x[%(a1)s] = fx[%(a2)s] * 1.25;’,
iter_space=’{[s,i]: 0<=s && s<T && 0<=i && i<N}’,
scatter=’{[s,i]->[c0,s,c1,i,c2]: c0=0 && c1=0 && c2=0}’)

moldyn_spec.add_access_relation(
statement_name=’S1’,
name=’a1’,
data_array=’x’,
iter_to_data=’{[s,i]->[i]}’)

The final step is to specify the data dependences. [I think we should specify
the data dependences between statements and between iterations of those state-
ments original iteration space.] FIXME: how do we specify data dependences.

1.1 Computation Summary After Initial Specification

Each statement has an original iteration space and a scheduling function that
maps each point in the original iteration space to a shared iteration space with
all the other statements. We refer to the union of all the statement images
in the shared iteration space as the full iteration space. Iteration reordering
transformations are specified in terms of the full iteration space. Therefore, an
interactive tool that enables using RTRTs should show the user the initial full
iteration space specification and the full iteration space specification after any
iteration reordering transformations have been applied. The full iteration space
is computed by applying the scheduling functions to each statement and then
taking the union of the resulting sets.

A related issue is that the access relations as specified by the user map points
in the original iteration space for a statement into the data space being accessed.
To reflect the iteration reordering transformations in the access relations, all of
the original access relation specifications are modified automatically so that they
map points in the full iteration space to the data space being accessed. We do
this by applying each access relation to the inverse of the original scheduling
function for the associated statement. (We talked about this on 1/9/09).

For this example, the computation’s initial specification can be presented as
follows:

3

// full iteration space:
// { [0, s, 0, i, 0] : 0<=s && s<T && 0<=i && i<N }
// union { [0, s, 1, ii, x] : 0<=s && s<T && 0<=ii && ii<n_inter && 0>=x && x<=1 }
for (s=0; s<T; s++) {
for (i=0; i<N; i++) {

S1: x[i] = fx[i]*1.25;
}
for (ii=0; ii<n_inter; ii++) {

S2: fx[inter1[ii]] += x[inter1[ii]] - x[inter2[ii]];
S3: fx[inter2[ii]] += x[inter1[ii]] - x[inter2[ii]];

}
}

// data dependences:
// D_S1_to_S2 = {[0,s,0,i,0] -> [0,s,1,ii,0] : i = inter1(ii) }
// union {[0,s,0,i,0] -> [0,s,1,ii,0] : i = inter2(ii) }
// D_S1_to_S3 = {[0,s,0,i,0] -> [0,s,1,ii,1] : i = inter1(ii) }
// union {[0,s,0,i,0] -> [0,s,1,ii,1] : i = inter2(ii) }
// D_S2_to_S1 = { [0,s1,1,ii,0] -> [0,s2,0,i,0] : s2 = s1 + 1 && i = inter1(ii) }
// union {[0,s1,1,ii,0] -> [0,s2,0,i,0] : s2 = s1 + 1 && i = inter2(ii) }
// D_S3_to_S1 = { [0,s1,1,ii,1] -> [0,s2,0,i,0] : s2 = s1 + 1 && i = inter1(ii) }
// union {[0,s1,1,ii,1] -> [0,s2,0,i,0] : s2 = s1 + 1 && i = inter2(ii) }

2 Transformation Writer Specifying RTRTs

All RTRTs include compile time components and runtime components. The
compile time component requires that the user specify what data array(s) or
iteration subspace(s) are to be transformed using which explicit relations that
will be available at runtime. The RTRT subclass consists of methods that
compute the input explicit relation specifications at compile time. The RTRT
also includes methods that modify statement access relations and/or scheduling
functions.

The code generator will generate code that computes the explicit relations
needed as input to the various reordering algorithms. The reordering algorithms
are called explicit relation generators, because their output is also an explicit
relation.

The reordering algorithms are written by hand and are part of the run-time
library support for RTRTs.

3 Usage of RTRTs

Specifications for data permutation.

moldyn_spec.add_transformation(
iegen.trans.DataPermuteTrans,
name=’cpack’,

4

reordering_name=’sigma’,
data_arrays=[’x’,’fx’],
iter_sub_space_relation=’{[c0,s,c1,i,c2]->[i] : c1=1}’,
target_data_array=’x’,
erg_func_name=’ERG_cpack’)

moldyn_spec.add_transformation(
iegen.trans.IterPermuteTrans,
name=’lexmin’,
reordering_name=’delta’,
iter_sub_space_relation=’{[c0, s, c1, ii, c2] -> [ii] : c1=1}’,
target_data_arrays=[’x’,’fx’],
erg_func_name=’ERG_lexmin’)

The more intuitive specification requires the following information (informa-
tion that the user must provide as parameters to IterPermuteTrans):

• The relation between the full iteration space and the iteration subspace
that is being permuted. (In DataPermuteTrans something similar is called
iter sub space relation). For this example, we have

{[c0, s, c1, ii, c2] → [c1, ii] | c1 = 1}

• The iteration permutation transformation assumes that it will be permut-
ing an iteration space based on how that iteration space accesses a set of
data spaces. Therefore we need a set of target data arrays.

• Finally we need the name of the reordering algorithm, or ERG, that the
transformation should use.

4 Automatic Generation of Inspector and Ex-
ecutor

After processing each RTRT, the IDG will be extended to represent components
in the inspector and the access relations and/or scheduling functions associated
with various statements will be modified to represent the effect of the transfor-
mation on the executor.

How the list of RTRTs is converted into an IDG and modifies the MapIR.

4.1 Data permutation

Assume we first apply a data reordering transformation to the data arrays x
and fx.

Rx→x′ = {[k] → [j] | j = sigma(k)}

5

The above is the mathematical description of the effect the transformation will
have on the dataspace x. The transformation writer creates a subclass that
provides an interface for the user to specify the transformation (see specification
in Section 3) and that implements the following:

• DataPermuteRTRT.calc input generates unioned access relation for all
statements in iteration sub space. In Figure 2 the create access relation is
labeled ER 1.

• The DataPermuteRTRT.calc output routine will generate an ER node rep-
resenting the permutation sigma. [Alan: where is map of name sigma to
that ER node?]

• The update mapIR method in general modifies any statement scheduling
functions or access relations that are affected by the transformation. For
the example data reordering, any access relations targeting the data arrays
being reordered need to be modified by composing the data reordering
relation Rx→x′ with each affected access relation.

• The update IDG creates nodes in the inspector dependence graph (IDG)
for inputs to the reordering algorithm (e.g. ER 1), the reordering algo-
rithm (e.g. ERG cpack), and the output of the reordering algorithm (e.g.
ER sigma). Nodes for the data arrays being reordered and the generic
reordering algorithm are also added. In the IDG, the reordered data ar-
rays have the number one appended to indicate that there is actually an
output array. In the implementation, the reordered array is copied back
into the original array. [This is probably too much in terms of detail]. Fig-
ure reffig:afterDataPermute shows the IDG after the update IDG method
for the data permutation transformation has been applied. [Alan: I think
that whether we decide to compose two or more data reorderings to the
same array should be an ITO].

After data permutation has been applied, the computation specification for
the executor in MapIR is as shown in Figure 3. The change in the access
relations is due to composing Rx→x′ with the current access relations for the
x and fx arrays. Notice that we do not change the name of the arrays. This
is so that the statement can have more general formats (e.g. accessing data
through macros), and we don’t have to recognize these more general constructs
and rename them.

4.2 Loop/Computation Alignment

FIXME: We need to look at how the term loop alignment has been used in the
past.

FIXME: the below text also describes data alignment a little
Once a loop or data permutation has been performed, it could be that the

permuted loop is now accessing a data array indirectly instead of directly and/or
other loops that access permuted data arrays are now no longer accessing the

6

IA_inter1

ER_1
{[ii] -> [k] : k=inter1(ii)}

union {[ii] -> [k] : k=inter2(ii) }

IA_inter2

Data_x

Data_remap_1

Data_fx

Data_x_1 Data_fx_1

ERG_cpack

ER_sigma

Figure 2: The inspector dependence graph after the compile-time application
of data permutation on the data arrays x and fx based on how x is accessed in
the ii loop.

permuted data array directly. This can be fixed by aligning the data array to
the loop that is accessing it or permuting the loop if the loop does not contain
any loop carried dependences.

In Figure 3, the status of the access relations after a sequence of transforma-
tions are shown. Note that the i loop, which originally accessed the x and fx
data arrays direction and sequentially now accesses those data arrays indirectly
through the index array sigma. Since there are no loop carried dependences in
the i loop, we can apply an iteration permutation to the i loop so as to align
the i loop with the data arrays x and fx.

moldyn_spec.add_transformation(
iegen.trans.IterAlignTrans,
name=’iter_align’,
iter_space_trans=’’’{[c0, s, c0, i, c0] -> [c0, s, c0, j, c0] : c0=0 && j=sigma(i)}

union {[c0, s, c1, ii, x] -> [c0, s, c1,ii, x] : c0=0 && c1=1}’’’)

The transformation is mathematically specified as a relation on the full it-
eration space to a new full iteration space as seen here:

TI0→I1 = {[0, s, 0, i, 0] → [0, s, 0, j, 0] | j = sigma(i)}
∪ {[0, s, 1, ii, x] → [0, s, 1, ii, x]}

Currently the user must specify the transformation for the full iteration
space. The transformation relation is needed so as to modify the access relations
appropriately.

7

// full iteration space:
// { [0, s, 0, i, 0] : 0<=s && s<T && 0<=i && i<N }
// union { [0, s, 1, ii, x] : 0<=s && s<T && 0<=ii
// && ii<n_inter && 0>=x && x<=1 }
for (s=0; s<T; s++) {
for (i=0; i<N; i++) {

S1: x[sigma[i]] = fx[sigma[i]]*1.25;
}
for (ii=0; ii<n_inter; ii++) {

// simplified computations
S2: fx[sigma[inter1[ii]]]

+= x[sigma[inter1[ii]]] - x[sigma[inter2[ii]]];
S3: fx[sigma[inter2[ii]]]

+= x[sigma[inter1[ii]]] - x[sigma[inter2[ii]]];
}

}

// data dependences:
// D_S1_to_S2 = {[0,s,0,i,0] -> [0,s,1,ii,0] : i = inter1(ii) }
// union {[0,s,0,i,0] -> [0,s,1,ii,0] : i = inter2(ii) }
// D_S1_to_S3 = {[0,s,0,i,0] -> [0,s,1,ii,1] : i = inter1(ii) }
// union {[0,s,0,i,0] -> [0,s,1,ii,1] : i = inter2(ii) }
// D_S2_to_S1 = { [0,s1,1,ii,0] -> [0,s2,0,i,0] : s2 = s1 + 1
// && i = inter1(ii) }
// union {[0,s1,1,ii,0] -> [0,s2,0,i,0] : s2 = s1 + 1
// && i = inter2(ii) }
// D_S3_to_S1 = { [0,s1,1,ii,1] -> [0,s2,0,i,0] : s2 = s1 + 1
// && i = inter1(ii) }
// union {[0,s1,1,ii,1] -> [0,s2,0,i,0] : s2 = s1 + 1
// && i = inter2(ii) }

Figure 3: Code after the compile-time application of data permutation on the
x and fx data arrays.

8

Given the parameters for the iteration alignment transformation, the trans-
formation when applied at compile time does the following:

• update mapIR will not modify the scheduling functions for a loop realign-
ment. Instead the effect of the loop permutation can be seen in the access
relations of the loop being permuted. We compose the access relations
with the inverse of TI0→I1 to calculate the new access relations. Any data
dependences involving iterations in the permuted loop will also be affected
by the iteration alignment.

• update IDG does nothing for loop alignment.

For the example in Figure 3, all of the array accesses in the i loop involve the
index array sigma, therefore permuting the i loop with sigma results in those
array accesses no longer needing the indirect access through sigma. Specifically,
the access relation for the x and fx array accesses in loop i is as follows:

AI0→x = {[0, s, 0, v, 0] → [r] | r = sigma(v)}

Composing the above with the inverse of TI0→I1 results in the following:

AI1→x = AI0→x compose (inverse TI0→I1)

{[0, s, 0, v, 0] → [r] | r = sigma(v)} compose {[0, s, 0, j, 0] → [0, s, 0, i, 0] | j = sigma(i)}

AI1→x = {[0, s, 0, j, 0] → [r] | r = sigma(v) ∧ j = sigma(v)}

Doing a simplification that sets r equal to j results in a sequential access function.
Iteration reorderings also affect data dependences. To calculate the new

data dependences, the iteration reordering, TI0→I1 , is composed with the result
of the data dependence being composed with the inverse of the same iteration re-
ordering. Assume that DI0→I0 is a dependence relation for the original iteration
space I0. The full set of dependences is the union of D S1 to S2, D S1 to S3,
D S2 to S1, and D S3 to S1. To illustrate how the dependence relations should
be modified, we show the effect of the loop alignment transformation on the
dependence DI0→I0 = {[0, s, 0, i, 0] → [0, s, 1, ii, 0] | i = inter1(ii)}, which is a
subset of the dependences in the original iteration space.

DI1→I1 = TI0→I1 compose (DI0→I0 compose (inverse TI0→I1))

For this example, we have the following (see latex comments for details):

DI1→I1 = TI0→I1 compose
({[0, s, 0, i, 0] → [0, s, 1, ii, 0] | i = inter1(ii)} compose
({[0, s, 0, j, 0] → [0, s, 0, i, 0] | j = sigma(i)}
∪ {[0, s, 1, ii, x] → [0, s, 1, ii, x]}))

which becomes:

DI1→I1 = {[0, s, 0, j, 0] → [0, s, 1, ii, x] | j = sigma(inter1(ii))}

9

Notice that for iteration alignment, all of the work can be done at compile
time. There is no input or output being added to the IDG, because we only end
up with the sigma uninterpreted function in the data dependences and access
relations. The data permutation transformation already put an explicit relation
specification for sigma in the IDG.

FIXME: might want to create a data alignment example to go along with
DingKen99.

After loop alignment has been applied at compile time, the inspector depen-
dence graph (IDG) is the same as after data reordering (see Figure 3). After
loop alignment has been applied, the computation specification for the executor
in MapIR is as shown in Figure 4.

4.3 Iteration permutation

Next we apply an iteration reordering transformation to the ii loop. The user
provides a description of the transformation as follows:

moldyn_spec.add_transformation(
iegen.trans.IterPermuteTrans,
name=’lexmin’,
iter_space_trans=’’’{[c0, s, c0, i, c0] -> [c0, s, c0, i, c0] : c0=0 }

union {[c0, s, c1, ii, x] -> [c0, s, c1, j, x] : c0=0 && c1=1 && j=delta(ii)}’’’
reordering_name=’delta’,
iter_sub_space_relation=’{[c0, s, c1, ii, c2] -> [ii] : c1=1}’,
target_data_arrays=[’x’,’fx’],
erg_func_name=’ERG_lexmin’)

The user’s description indicates that the ii loop in the example should be
permuted based on how that loop is accessing the data arrays x and fx.

The transformation is mathematically specified as a relation on the full it-
eration space to a new full iteration space as seen here (and as provided by the
user):

TI0→I1 = {[0, s, 0, i, 0] → [0, s, 0, i, 0]}
∪ {[0, s, 1, ii, x] → [0, s, 1, j, x] | j = delta(ii)}

ALAN: the bulleted list below only outlines the algorithm. See the later
sub sections for more detail. Given the parameters for the iteration permuta-
tion transformation, the transformation when applied at compile time does the
following:

• calc input computes ER 2, which is the access relation that between the
loop being permuted and the target arrays.

• The IterationPermuteRTRT.calc output routine will generate an ER node
representing the permutation delta.

10

// full iteration space:
// { [0, s, 0, i, 0] : 0<=s && s<T && 0<=i && i<N }
// union { [0, s, 1, ii, x] : 0<=s && s<T && 0<=ii
// && ii<n_inter && 0>=x && x<=1 }
for (s=0; s<T; s++) {
for (i=0; i<N; i++) {

S1: x[i] = fx[i]*1.25;
}
for (ii=0; ii<n_inter; ii++) {

// simplified computations
S2: fx[sigma[inter1[ii]]]

+= x[sigma[inter1[ii]]] - x[sigma[inter2[ii]]];
S3: fx[sigma[inter2[ii]]]

+= x[sigma[inter1[ii]]] - x[sigma[inter2[ii]]];
}

}

// data dependences:
// D_S1_to_S2 = {[0,s,0,i,0] -> [0,s,1,ii,0] :
// i = sigma(inter1(ii)) }
// union {[0,s,0,i,0] -> [0,s,1,ii,0] :
// i = sigma(inter2(ii)) }
// D_S1_to_S3 = {[0,s,0,i,0] -> [0,s,1,ii,1] :
// i = sigma(inter1(ii)) }
// union {[0,s,0,i,0] -> [0,s,1,ii,1] :
// i = sigma(inter2(ii)) }
// D_S2_to_S1 = { [0,s1,1,ii,0] -> [0,s2,0,i,0] : s2 = s1 + 1
// && i = sigma(inter1(ii)) }
// union {[0,s1,1,ii,0] -> [0,s2,0,i,0] : s2 = s1 + 1
// && i = sigma(inter2(ii)) }
// D_S3_to_S1 = { [0,s1,1,ii,1] -> [0,s2,0,i,0] : s2 = s1 + 1
// && i = sigma(inter1(ii)) }
// union {[0,s1,1,ii,1] -> [0,s2,0,i,0] : s2 = s1 + 1
// && i = sigma(inter2(ii)) }

Figure 4: Code after the compile-time application of iteration alignment on the
i loop. Aligning/permuting the i loop to match sigma data reordering.

• update mapIR will not modify the scheduling functions for a loop per-
mutation, but it will modify all access relations and data dependences
affected by the loop permutation.

• update IDG will add the delta ER and ERG and their dependences into
the IDG. The update IDG method will also iterate over all the relations

11

in the mapIR and the IDG and ensure that any uninterpreted functions in
those relations have a corresponding explicit relation specification in the
IDG.

After iteration permutation has been applied, the inspector dependence
graph (IDG) is as shown in Figure 5.

IA_inter1

ER_1
{[ii] -> [k] : k=inter1(ii)}

union {[ii] -> [k] : k=inter2(ii) }

ER_2
{ [ii] -> [sigma(inter1(ii))] }

union { [ii] -> [sigma(inter2(ii))] }

IA_inter2

ERG_cpack

ER_sigma

Data_remap_1

ERG_lexmin

ER_delta

ER_delta_inv

Data_x_1Data_fx_1

Data_xData_fx

Figure 5: The inspector dependence graph after the compile-time application of
iteration permutation on the ii loop based on how x is accessed in the ii loop.

After iteration permutation has been applied, the computation specification
for the executor in MapIR is as shown in Figure 6.

The statements all maintain the same scheduling function, because the trans-
formation is an iteration permutation, which does not require changing the loop
structure. In other words, the loop being permuted will still need the same
bounds. The permutation of the iterations is reflected in changes to the access
relations and the data dependences.

4.3.1 Calculating the input relation

The iteration permutation RTRT calculates the input access relation (ER 2) by
unioning the access relations for all of the statements in the iteration sub space
to the target data spaces. To calculate ER 2, first all of the access relations
that target the specified target arrays are unioned. For this example, the result
of the union over all access relations to x and fx should be as follows:

AR = {[0, s, 0, i, 0] → [i]}
∪ {[0, s, 1, ii, x] → [k] | k = sigma(inter1(ii))}
∪ {[0, s, 1, ii, x] → [k] | k = sigma(inter2(ii))}

12

// full iteration space:
// { [0, s, 0, i, 0] : 0<=s && s<T && 0<=i && i<N }
// union { [0, s, 1, ii, x] : 0<=s && s<T && 0<=ii
// && ii<n_inter && 0>=x && x<=1 }
for (s=0; s<T; s++) {
for (i=0; i<N; i++) {

S1: x[i] = fx[i]*1.25;
}

for (ii=0; ii<n_inter; ii++) {
// simplified computations

S2: fx[sigma[inter1[delta_inv[ii]]]]
+= x[sigma[inter1[delta_inv[ii]]]]
- x[sigma[inter2[delta_inv[ii]]]];

S3: fx[sigma[inter2[delta_inv[ii]]]]
+= x[sigma[inter1[delta_inv[ii]]]]
- x[sigma[inter2[delta_inv[ii]]]];

}
}

// data dependences:
// D_S1_to_S2 = {[0,s,0,i,0] -> [0,s,1,ii,0] :
// i = sigma(inter1(delta_inv(ii))) }
// union {[0,s,0,i,0] -> [0,s,1,ii,0] :
// i = sigma(inter2(delta_inv(ii))) }

Figure 6: Code after the compile-time application of iteration permutation on
the ii loop.

13

Next, the mapping from the full iteration space to the subspace being tiled
(iter sub space relation) is used to restrict the domain of the above access rela-
tion to the loop being permuted.

AR compose (inverse issr)

{[ii] → [k] | k = sigma(inter1(ii))} ∪ {[ii] → [k] | k = sigma(inter2(ii))}

ALAN: When ER 2 is created, its dependence on sigma, inter1, and inter2 is
also noted? Or do we just have a pass that is called in all update IDG methods?
Or a pass that is called after all update IDG methods? See Post-pass on IDG
sub section below for possible answer.

4.3.2 Updating the MapIR

The change in the access relations is due to the following being done to each
access relation A originating in the loop being permuted, which for this example
is the ii loop:

AI2→x = AI1→x compose (inverse TI1→I2)

For this example code example, many of the access relations involve the unin-
terpreted function symbols sigma and inter1 or inter2. For example,

AI1→x = {[0, s, 1, ii, 0] → [r] | r = sigma(inter1(ii))}

Composition of the access relations with the inverse of the iteration transforma-
tions results in relations with an existentially quantified variable as a parameter
to two uninterpreted function symbols (see delta(ii) and inter1(ii) in the result
of the composition below).

{[0, s, 1, ii, 0] → [r] | r = sigma(inter1(ii))} compose {[0, s, 1, ii′, x] → [0, s, 1, ii, x] | ii′ = delta(ii)}

AI2→x = {[0, s, 1, ii′, x] → [r] | ii′ = delta(ii) ∧ r = sigma(inter1(ii))}

At compile time, the information that the uninterpreted function delta will
be a permutation is used to simplify the above equation to the following:

{[0, s, 1, ii′, x] → [r] | ii = delta−1(ii′) ∧ r = sigma(inter1(ii))}

After the inverse simplification, other simplification rules may be applied to
get rid of all existentially quantified variables (e.g. ii).

{[0, s, 1, ii′, x] → [r] | r = sigma(inter1(delta−1(ii′)))}

Notice that the resulting access relation is reflected in the current version in the
code (see Figure 6).

Iteration reorderings also affect data dependences. To calculate the new data
dependences, the iteration reordering is composed with the result of the data
dependence being composed with the inverse of the iteration reordering.

14

DI2→I2 = TI1→I2 compose (DI1→I1 compose (inverse TI1→I2))

For this example, we have the following (see latex comments for details):

DI2→I2 = TI1→I2 compose
({[0, s, 0, i, 0] → [0, s, 1, ii, 0] | i = sigma(inter1(ii))} compose
({[0, s, 0, i, 0] → [0, s, 0, i, 0]}
∪ {[0, s, 1, ii′, x] → [0, s, 1, ii, x] | ii′ = delta(ii)}))

which becomes:

DI2→I2 = {[0, s, 0, i, 0] → [0, s, 1, ii′, x] | ii′ = delta(ii) and i = sigma(inter1(ii))}

which with the inverse simplification will be simplified to:

DI2→I2 = {[0, s, 0, i, 0] → [0, s, 1, ii′, x] | i = sigma(inter1(delta−1(ii′)))}

4.3.3 Post-pass on IDG

The inverse simplification introduces delta inv into the updated access rela-
tions and data dependences. After the transformation has updated the IDG
with any ERG nodes and or inputs and outputs to the ERG nodes, it will still
be necessary to determine if any inverse explicit relations are needed in the
IDG. For this example, the delta inv ER node will need to be added to the
IDG. The IDG will need dependence edge between the delta ER node and the
delta inv ER node.

(Move later to code gen section: The code generation for the delta inv ER
node is a call to the genInverse method on the delta ER.)

4.4 Sparse Tiling

Next we apply an iteration reordering transformation to both the i and ii
loops. A sparse tiling is a transformation that maps a space of iteration points
into a set of tiles. The new schedule for the iteration space is then to execute
the iteration points by tile. One goal of a sparse tiling transformation is to
group iterations such that iterations which reuse the same data are within the
same tile and therefore the computation as a whole can experience improved
temporal data locality.

For this example, we partition the iterations in the ii loop and group itera-
tions in the i loop with iterations in the ii loop based on those initial partitions.
A sparse tiling inspector is responsible for creating an explicit relation, which
we will call theta, that maps points in the iteration space to be sparse tiled
to tiles. The specific sparse tiling algorithm we use in our experiments is full
sparse tiling.

Full sparse tiling is just one way of computing the theta function. Other ways
include cache blocking. The overlapping work of Demmel’s group is another way,

15

but it places points of computation into two tiles. We can express that with
relations, but our code generator does not handle transformations that duplicate
iteration points in the target space.

A user can specify a full sparse tiling for the M2 example by adding the
sparse tiling transformation to the computation specification.

moldyn_spec.add_transformation(
name = ’blockpart’,
iegen.trans.BlockPart,
part_name=’part’,
num_part=’num_tile’, // should become an input symbolic
iter_sub_space_relation = ’{ [c0,s,x,j,y] -> [j] : x=1}’,
erg_func_name=’ERG_blockpart’)

moldyn_spec.add_transformation(
name = ’FST’,
iegen.trans.SparseTileTrans,
tiling_name=’theta’,
iter_space_trans=’’’{[c0, s, c0, i, x] -> [c0, s, c0, t, c0, i, x] : t = theta(0,i) && c=0 }

union {[c0, s, c1, ii, x] -> [c0, s, c0, t, c1, ii, x] : t = theta(1,ii) && c0=0 && c1=1 }’’’
num_tile=’num_tile’, // should become an input symbolic
input_deps_levels = [3], // level in iteration space before trans for deps that sparse tiling alg should inspect
iter_sub_space_relation = ’{[c0,s,x,j,y] -> [x,j]}’,
iter_seed_space_relation = ’{[c0,s,x,j,y] -> [x,j] : x=1}’,
seed_part = ’part’,
erg_func_name=’ERG_fullsparsetile’)

The above user specification includes the following iteration reordering trans-
formation specification:

TI2→I3 = {[0, s, 0, i, x] → [0, s, 0, t, 0, i, x] | t = θ(0, i)}
∪ {[0, s, 1, ii, x] → [0, s, 0, t, 1, ii, x] | t = θ(1, ii)}

The above user specification also indicates that the block partitioner explicit
relation generator (ERG blockpart) should be used to partition the iteration
points in the ii loop. The symbolic num tile will indicate the number of
partitions at runtime. The resulting partitioning will be an explicit relation
named part.

For the block partition transformation, the following occurs in the calc input,
calc output, update IDG and update mapIR methods of the transformation
subclass.

• calc input: For this example, the partitioner we are going to use in the par-
titioning step will simply block the iterations of the seed sub space, which
is {[1, ii] | 0 ≤ ii < numinter}. The calc output method associated
with BlockPart will compute the sub space being partitioned by applying
iter sub space relation to the full iteration space. The calc input

16

method will then create an ouAny symbolic constants involved in the
bounds of the sub space will also be considered input to the partitioning
ERG.

• The calc output method will create an explicit relation specification for
the partitioning, which maps points in the sub space to be partitioned to
partitions.

• Calling update IDG on the block partitioning subclass will cause insertion
of the nodes ERG blockpart and ER part and their associated depen-
dences into the IDG.

• The block partitioning transformation does not modify the computation
specification in any way.

The full sparse tiling algorithm (ERG fullsparsetile) will use the partitioning
stored in part as its seed partition and will inspect all dependences to and from
the seed space within the sub space of the full computation that is being sparse
tiled. For now, the dependences that are input to the sparse tiling algorithm are
specified by having the user indicate at which level the dependences are carried.
In this example, the dependences between loops i and ii are the dependences
that will be inspected.

The following is a description of how the sparse tiling transformation will
add nodes and edges to the IDG and modify the MapIR.

• The sparse tiling transformation’s calc input method creates an explicit
relation specification node for the dependences within the sub space being
sparse tiled that target the partitioning subspace and that originate from
the partitioning subspace.

• The sparse tiling transformation calc output routine will generate an ER
node representing the tiling function θ.

• The update IDG method inserts an ERG node into the IDG to indicate a
call to a specific sparse tiling algorithm. Dependences between the ERG
and its inputs and outputs are also inserted.

• The sparse tiling transformation update mapIR will apply the transforma-
tion specification TI1→I2 to the statement scheduling functions and access
functions.

After the sparse tiling has been applied at compile time, the inspector de-
pendence graph (IDG) is as is shown in Figure 9. After sparse tiling has been
applied, the computation specification for the executor in MapIR is as shown in
Figure 10.

17

Symbolic_n_inter

ERG_blockpart

IA_inter1

ER_1
{[ii] -> [k] : k=inter1(ii)}

union {[ii] -> [k] : k=inter2(ii) }

ER_2
{ [ii] -> [sigma(inter1(ii))] }

union { [ii] -> [sigma(inter2(ii))] }

ER_3
{ [0,i] -> [1,ii] : i=sigma(inter1(delta_inv(ii))) }

union { [0,i] -> [1,cc] : i=sigma(inter2(delta_inv(ii))) }

IA_inter2

Data_x

Data_remap_1

Data_fx

Data_x_1Data_fx_1

ERG_cpack

ER_sigma

ERG_lexmin

ER_delta

ER_delta_inv

ER_part

ERG_FST

ER_theta

Figure 7: The inspector dependence graph after the compile-time application of
sparse tiling on the i and ii loops based on the dependences between the two
points.

4.4.1 Calculating the inputs to sparse tiling

When the user specifies the data dependence relations, he or she will also spec-
ify at what level in the full iteration space the data dependence is carried. For
example, the dependence between statements 1 and 2 after the iteration per-
mutation of the ii loop is as follows:

D S1 to S2 = {[0, s, 0, i, 0] → [0, s, 1, ii′, x] | i = sigma(inter1(delta−1(ii′)))}

The above dependence is carried by the third element in the full iteration
space vector, because the dependence is between the i and ii loops and is not
carried by the s loop.

18

// full iteration space:
// { [0, s, 0, t, 0, i, 0] : 0<=s && s<T && 0<=i && i<N

&& t=theta(0,i) && 0<=t<=nt }
// union { [0, s, 0, t, 1, ii, x] : 0<=s && s<T && 0<=ii && ii<n_inter && 0>=x && x<=1

&& t=theta(1,ii) && 0<=t<nt }
for (s=0; s<T; s++) {
for (t=0; t<nt; t++) {
for (i=0; i<N; i++) {

S1: if (t=theta(0,i)) { x[i] = fx[i]*1.25; }
}

for (ii=0; ii<n_inter; ii++) {
// simplified computations

S2: if (t=theta(1,ii)) { fx[sigma[inter1[delta_inv[ii]]]]
+= x[sigma[inter1[delta_inv[ii]]]]
- x[sigma[inter2[delta_inv[ii]]]]; }

S3: if (t=theta(1,ii)) { fx[sigma[inter2[delta_inv[ii]]]]
+= x[sigma[inter1[delta_inv[ii]]]]
- x[sigma[inter2[delta_inv[ii]]]]; }

}
}

// data dependences:
// D_S1_to_S2 = {[0,s,0,t,0,i,0] -> [0,s,0,t,1,ii,0] :
// i = sigma(inter1(delta_inv(ii))) }
// union {[0,s,0,t,0,i,0] -> [0,s,0,t,1,ii,0] :
// i = sigma(inter2(delta_inv(ii))) }

Figure 8: Code after the compile-time application of iteration permutation on
the ii loop.

19

The sparse tiling transformation specification indicates that the inspector
should only inspect data dependences carried by the third element in the full
iteration space. Thus we compute the relation to inspect by unioning the above
dependence and the dependences between statement 1 and 3, but not the depen-
dences between statements 2 and 1, and the dependences between statements 3
and 1 since those are carried by the s loop.

The union of the relevant dependences is as follows:

D = {[0, s, 0, i, 0] → [0, s, 1, ii, 0] | i = sigma(inter1(delta−1(ii)))}
union {[0, s, 0, i, 0] → [0, s, 1, ii, 0] | i = sigma(inter2(delta−1(ii)))}

See doc/sparse-tile-design.txt for more details about how the FROM SEED and
TO SEED dependences are computed.

4.4.2 Updating the MapIR

The sparse tiling transformation causes the schedules for the statements in the
sub space being sparse tiled to be modified. For example, S1 starts with the
following schedule/scattering function

{[s, i]− > [0, s, 0, i, 0]}.

The full sparse tiling transformation should be composed with this original
scheduling function to create the updated schedule for S1,

TI2→I3 compose {[s, i] → [0, s, 0, i, 0]}

which equals
{[s, i] → [0, s, 0, t, 0, i, 0] : t = theta(0, i)}

The access relations do not appear to change in the code because the array
references do not change. However, the access relations need to be modified
so that they are mapping the new full iteration space to the various arrays
being accessed. The access relations are modified by the iteration reordering
transformation due to sparse tiling in the same way they were modified for
iteration alignment and iteration permutation. For this example, new set of
access relations from the third version of the full iteration space to the data
array x are computed as follows:

AI3→x = AI2→x compose (inverse TI2→I3)

which results in the following:
AI3→x =

FIXME: we end up with t=theta(...) constraints in the access relations when
we shouldn’t really need these because of the fact that the iteration space will
have that constraint.

20

The affect on the data dependences is computed the same as was done after
iteration alignment and iteration permutation; the iteration reordering is com-
posed with the result of the data dependence being composed with the inverse
of the iteration reordering.

DI3→I3 = TI2→I3 compose (DI2→I2 compose (inverse TI2→I3))

For this example, we have the following (see latex comments for details): FIXME

DI2→I2 = TI1→I2 compose
({[0, s, 0, i, 0] → [0, s, 1, ii, 0] | i = sigma(inter1(ii))} compose
({[0, s, 0, i, 0] → [0, s, 0, i, 0]}
∪ {[0, s, 1, ii′, x] → [0, s, 1, ii, x] | ii′ = delta(ii)}))

which becomes:

DI2→I2 = {[0, s, 0, i, 0] → [0, s, 1, ii′, x] | ii′ = delta(ii) and i = sigma(inter1(ii))}

which with the inverse simplification will be simplified to:

DI2→I2 = {[0, s, 0, i, 0] → [0, s, 1, ii′, x] | i = sigma(inter1(delta−1(ii′)))}

4.5 Inter Transformational Optimizations (ITO)

Requirements on the inspector dependence graph.

• Each explicit relation specification node should have an input arc from
another explicit relation or index array node for each uninterpreted func-
tion symbol in the specification. For example, ER 2 requires IA inter2,
IA inter1, and ER sigma as input.

• If an explicit relation specification is modified, it must be equivalent?

Most critical ones (we need data to back this list up)

• Index array collapsing.

• Sparse loops.

Others

• Remap data only once. When a string of two or more data remappings
appear in the inspector dependence graph, then the remap once ITO will
create an explicit relation specification for the composition of all the rel-
evant data permutations and make is so that the data remapping only
occurs once.

21

4.5.1 Index Array Collapsing, or Pointer Update

Index array collapsing is just a matter of inserting an ER specification for
nested ERS and replacing those nested uninterpreted function symbols in other
ER specifications (including those in the MapIR) and putting the appropriate
edges in the IDG. Index array collapsing is strictly more general than pointer
update [?], which focused on modifying index arrays after a data permutation so
as to reduce the level of indirection in a loop to one [FIXME: verify this]. Index
array collapsing applies any time there are two or more nested uninterpreted
function symbols in any explicit relation specifications. Such nesting occurs
more generally, for example ...

In the example, the explicit relation specification that is input into the lexmin
iteration permutation algorithm involves the nested uninterpreted function sym-
bols sigma(inter1(ii)) and sigma(inter2(ii)).

Thought experiment: What if we just treat each ITO as just another trans-
formation?

moldyn_spec.add_transformation(
iegen.trans.IndexArrayCollapse,
name=’sigmainter1’,
outer_func=’sigma’,
inner_func=’inter1’,
erg_func_name=’ERG_compose’) // not sure if we need this to be explicitly named. More like data_remap operation.

Given the parameters for the index array collapsing transformation, the
transformation when applied at compile time does the following:

• update IDG will create an explicit relation specification (see ER 4 in Fig-
ure ??)
access relation (ER 2) by unioning the access relations for all of the state-
ments in the iteration sub space to the target data spaces. Note that for
this example the access relations were modified due to the previously ap-
plied data permutation. When ER 2 is created, its dependence on sigma,
inter1, and inter2 is also noted.

• The IterationPermuteRTRT.calc output routine will generate an ER node
representing the permutation delta.

• update mapIR will not modify the scheduling functions for a loop permu-
tation. This is because we still want the loop bounds to stay affine(?).
Instead the effect of the loop permutation can be seen in the access rela-
tions of the loop being permuted. We compose the access relations with
the inverse of TI0→I1 to calculate the new access relations. Simplification
steps result in an inverse of delta being computed. Any data dependences
involving iterations in the permuted loop will also be affected by the iter-
ation reordering.

• update IDG will add the ER and ERG and their dependences into the
IDG. Will also need node for the inverse simplification.

22

Symbolic_n_inter

ERG_blockpart

IA_inter1

ER_1
{[ii] -> [k] : k=inter1(ii)}

union {[ii] -> [k] : k=inter2(ii) }

ER_2
{ [ii] -> [sigma(inter1(ii))] }

union { [ii] -> [sigma(inter2(ii))] }

ER_3
{ [0,i] -> [1,ii] : i=sigma(inter1(delta_inv(ii))) }

union { [0,i] -> [1,cc] : i=sigma(inter2(delta_inv(ii))) }

IA_inter2

Data_x

Data_remap_1

Data_fx

Data_x_1Data_fx_1

ERG_cpack

ER_sigma

ERG_lexmin

ER_delta

ER_delta_inv

ER_part

ERG_FST

ER_theta

Figure 9: The inspector dependence graph after the compile-time application of
sparse tiling on the i and ii loops based on the dependences between the two
points.

4.5.2 Discussion

Order and selection matters and is an open problem. I am guessing that if we do
the index array collapsing before we do the data and computation alignment, we
will end up with more work in the inspector. Also if we apply loop realignment
after tiling, then we have to modify the tiling function theta.

4.6 Generating the composed inspector

Code generation of the composed inspector.

23

// full iteration space:
// { [0, s, 0, t, 0, i, 0] : 0<=s && s<T && 0<=i && i<N

&& t=theta(0,i) && 0<=t<=nt }
// union { [0, s, 0, t, 1, ii, x] : 0<=s && s<T && 0<=ii && ii<n_inter && 0>=x && x<=1

&& t=theta(1,ii) && 0<=t<nt }
for (s=0; s<T; s++) {
for (t=0; t<nt; t++) {
for (i=0; i<N; i++) {

S1: if (t=theta(0,i)) { x[i] = fx[i]*1.25; }
}

for (ii=0; ii<n_inter; ii++) {
// simplified computations

S2: if (t=theta(1,ii)) { fx[sigma[inter1[delta_inv[ii]]]]
+= x[sigma[inter1[delta_inv[ii]]]]
- x[sigma[inter2[delta_inv[ii]]]]; }

S3: if (t=theta(1,ii)) { fx[sigma[inter2[delta_inv[ii]]]]
+= x[sigma[inter1[delta_inv[ii]]]]
- x[sigma[inter2[delta_inv[ii]]]]; }

}
}

Figure 10: Code after the compile-time application of iteration permutation on
the ii loop.

24

4.7 Generating the composed executor

Code generation of the composed executor.

25

