Katherine E. Isaacs

Contact

External Links

Project Code

Journal Publications

K. E. Isaacs, T. Gamblin, A. Bhatele, M. Schulz, B. Hamann, and P.-T. Bremer. Ordering traces logically to identify lateness in message passing programs. IEEE Transactions on Parallel and Distributed Systems, 27(3):829-840, 2016.
PDF | DOI | Code

K. E. Isaacs, P.-T. Bremer, I. Jusufi, T. Gamblin, A. Bhatele, M. Schulz, and B. Hamann. Combing the communication hairball: Visualizing large-scale parallel execution traces using logical time. IEEE Transactions on Visualization and Computer Graphics, Proceedings of InfoVis ’14, 20(12):2349–2358, 2014.
PDF | DOI | Video Preview | Code

E. A. Dinsdale, R. A. Edwards, B. A. Bailey, I. Tuba, S. Akhter, K. McNair, R. Schmieder, N. Apkarian, M. Creek, E. Guan, M. Hernandez, K. Isaacs, C. Peterson, T. Regh, and V. Ponomarenko. Multivariate analysis of functional metagenomes. Frontiers in Genetics, 4(41), 2013.

A. G. Landge, J. A. Levine, K. E. Isaacs, A. Bhatele, T. Gamblin, M. Schulz, S. H. Langer, P.-T. Bremer, and V. Pascucci. Visualizing network traffic to understand the performance of massively parallel simulations. IEEE Transactions on Visualization and Computer Graphics, Proceedings of InfoVis ’12, 18(12):2467–2476, 2012.
PDF | DOI

Conference and Workshop Publications

K. E. Isaacs, A. Bhatele, J. Lifflander, D. Boehme, T. Gamblin, M. Schulz, B. Hamann, and P.-T. Bremer. Recovering logical structure from Charm++ event traces. In Proceedings of the ACM/IEEE Conference on Supercomputing (SC15), SC '15, Nov. 2015.
PDF | DOI

A. Bhatele, N. Jain, K. E. Isaacs, R. Buch, T. Gamblin, S. H. Langer, and L. V. Kalé. Optimizing the performance of parallel applications on a 5D torus via task mapping. In Proceedings of IEEE International Conference on High Performance Computing, HiPC ’14, Dec. 2014.
PDF

C. M. McCarthy, K. E. Isaacs, A. Bhatele, P.-T. Bremer, and B. Hamann. Visualizing the five-dimensional torus network of the IBM Blue Gene/Q. In Proceedings of the 1st Workshop on Visual Performance Analysis, pages 24 – 27, Nov. 2014.
PDF | DOI

K. E. Isaacs, A. Giménez, I. Jusufi, T. Gamblin, A. Bhatele, M. Schulz, B. Hamann, and P.-T. Bremer. State of the art of performance visualization. In Eurographics/IEEE Conference on Visualization State-of-the-Art Reports, EuroVis ’14, 2014.
PDF | DOI | Companion Website

A. Bhatele, K. Mohror, S. H. Langer, and K. E. Isaacs. There goes the neighborhood: performance degradation due to nearby jobs. In Proceedings of the ACM/IEEE Conference on Supercomputing (SC13), SC ’13, Nov. 2013.
PDF | DOI

A. Bhatele, T. Gamblin, K. E. Isaacs, B. T. N. Gunney, M. Schulz, P.-T. Bremer, and B. Hamann. Novel views of performance data to analyze large-scale adaptive applications. In Proceedings of ACM/IEEE Conference on Supercomputing (SC12), SC ’12, Nov. 2012.
PDF | DOI

A. Bhatele, T. Gamblin, S. H. Langer, P.-T. Bremer, E. W. Draeger, B. Hamann, K. E. Isaacs, A. G. Landge, J. A. Levine, V. Pascucci, M. Schulz, and C. H. Still. Mapping applications with collectives over sub-communicators on torus networks. In Proceedings of ACM/IEEE Conference on Supercomputing (SC12), SC ’12, Nov. 2012.
PDF | DOI

M. Schulz, A. Bhatele, P.-T. Bremer, T. Gamblin, K. Isaacs, J. A. Levine, and V. Pascucci. Creating a tool set for optimizing topology-aware node mappings. In 5th Parallel Tools Workshop, Sept. 2011.

Extended Abstracts

K. E. Isaacs, T. Gamblin, A. Bhatele, P.-T. Bremer, M. Schulz, and B. Hamann. Extracting logical structure and identifying stragglers in parallel execution traces. In Proceedings 19th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP ’14, pages 397–398, 2014.
DOI

K. E. Isaacs, A. G. Landge, T. Gamblin, P.-T. Bremer, V. Pascucci, and B. Hamann. Exploring performance data with Boxfish. In Proceedings of the 2012 SC Companion: ACM/IEEE Conference on Supercomputing, SCC ’12, pages 1380–1381, Nov. 2012.
PDF | DOI | Code

Presentations

K. Isaacs. An organized view of MPI and Charm++ traces. Contributed Talk. 13th Annual Workshop on Charm++ and its Applications, Charm++ Workshop ’15, Urbana, IL, USA, May 7, 2015.

K. E. Isaacs. Boxfish: Mapping performance data and visualizations. Invited Talk. Lawrence Berkeley National Laboratory, Berkeley, CA USA, March 26, 2015.

K. E. Isaacs and T. Gamblin. Introduction to performance analysis. Workshop on Visualization and Analysis of Performance on Large-scale Software, Atlanta, Georgia USA, October 14, 2013.

K. Isaacs. A statistical method for environmental prediction in metagenomic samples. Contributed Talk. Joint Math Meetings, San Francisco, California USA, January 14, 2010.